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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) has recently
proved its utility in studying brain large-scale networks through
fluctuations in resting-state data. To process such rest acquisitions,
exploratory methods such as Independent Component Analysis
(ICA) are of particular interest. Yet, while successfully applied at
the individual level, existing ICA methods still fail to provide robust
functional network detection at the group level.

In this paper, we propose a method for detecting group func-
tional large-scale networks in fMRI using ICA, which allows to sys-
tematically control the consistency of the group results with the in-
dividual ones. This approach, called NEDICA (NEtwork Detection
using ICA), was applied on resting-state data from twenty healthy
subjects and the robustness of the resulting networks was assessed
by a bootstrap sampling procedure.

We found seven functional networks that were very representa-
tive of the population and highly reproducible on the basis of boot-
strap tests. These results were in good agreement with the existing
literature and confirmed the ability of fMRI to noninvasively reveal
large-scale interactions in the brain.

Index Terms— fMRI, ICA, group analysis, functional networks

1. INTRODUCTION

Blood oxygen level dependent (BOLD) functional magnetic res-
onance imaging (fMRI) makes it possible to noninvasively track
metabolic and hemodynamic changes in the brain [1]. Recently,
it has been reported that fMRI resting-state fluctuations in the
frequency range below 0.1 Hz can reflect several structures of func-
tional brain networks [2]. Biswal et al. introduced the functional
connectivity approach to explore in individuals the brain regions
that were functionally related to a seed region in the primary motor
cortex [3]. This approach has been further applied to other brain
systems including the auditory system [4] or attentional networks
[2]. Even though the relation between fMRI low-frequency fluc-
tuations and neural activity synchronization remains controversial
[5], the spatial structures characterizing functional networks have
been reproducibly found through different imaging modalities such
as PET [6] or simultaneous EEG/fMRI acquisitions [7]. In this
context, one of the most accepted assumptions is that each fMRI
time-series is the linear mixture of spatially distributed processes
related to brain activity, as well as those related to other specific
brain phenomena such as cardiac activity, respiration or movements.
Under this assumption, spatial ICA (sICA) has proved its ability to
blindly separate these different processes from fMRI acquisitions

[8] and to reveal functional connectivity networks from individual
resting-state data without any priors regarding the brain regions
involved in these networks [9].

However, the results consistently found at the individual level
have now to be extended to the group level. Recent methodologi-
cal developments based on sICA allow one to extract distinct func-
tional networks characterizing the activity of a group of subjets from
resting-state data [10, 11, 12]. However, the exact nature and com-
position of these networks remain a matter of debate. Indeed, while
DeLuca et al. [11] have described five networks at rest, includ-
ing visual, motor or attentional networks, other investigators have
identified up to ten networks [10, 12]. The variability of these re-
sults might be explained by the diversity of approaches. The first
approaches proposed to apply sICA decomposition on the pooled
individual data [10, 13]. These approaches assume that the same
processes exist for all subjects. However, the probable between-
subject variability in activity location may bias the estimation of the
components at the group level. Recently, the tensor-PICA approach
[14] has proposed to take between-subject variability into account
in the estimated model. However, to our knowledge, its application
on resting-state data [12] has been limited to low-frequency power
spectra of the time-series instead of the time-series themselves and
unfortunately, according to the results showed, some networks found
did not seem highly reproducible.

Thereby, the aim of this work is twofold: first, to propose a
method for identifying functional networks at the group level, which
would benefit the best from the application of sICA at the individual
level; second, to test the reproducibility of the revealed networks on
a large dataset. The method, called NEDICA for NEtwork Detec-
tion using ICA, was applied to a dataset of twenty healthy subjects
acquired at rest. Its robustness was assessed using a bootstrap sam-
pling procedure. This procedure allowed one to evaluate the repro-
ducibility of the resulting networks.

2. MATERIALS AND METHODS

2.1. Data

Magnetic resonance imaging data were acquired on twenty right-
handed volunteers (age: 24-30 years; twelve male) on an MRI
Siemens TRIO system at 3.0 Teslas at the Centre de Recherches de
l’Institut Universitaire de Gériatrie de Montréal, Canada, according
to a protocol approved by the local ethic committee. Functional
data were recorded during continuous rest consisting of remaining
eyes closed. FMRI acquisitions were performed using a single-shot,
gradient-recalled echo-planar imaging sequence (TR = 3500 ms; TE
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= 40 ms; flip angle = 90◦; matrix 64 × 64 voxels). One hundred
and sixty T∗

2-weighted images were acquired for each run consist-
ing of 41 contiguous axial slices (voxel size: 3.5 mm isotropic).
Two successive runs were acquired for each subject, leading to 40
resting-state fMRI time series in total. Prior to data analysis, a slice
timing correction was performed on the fMRI data using the SPM2
software1. The resulting raw data were corrected for quadratic drifts
by using linear regression, and mean corrected (i.e. the mean of
each time course was set to 0).

2.2. Identification of group networks (NEDICA)

The main objective of the subsequent data analysis was to identify
functional processes that are temporally and spatially structured dur-
ing rest. Akin to Esposito et al. [15], we chose to use the efficiency
of sICA decomposition applied at the individual level, which has
been extensively reported. The extension of the results to the group
level consisted then of finding the patterns obtained from the single-
subject procedure that were robustly reproducible across the popula-
tion.

In our application, 40 independent components (IC) were com-
puted for each run by using the infomax ICA algorithm [16] and
each spatial component was scaled to z-scores, yielding

20 subjects× 2 runs/subject× 40 ICs/run = 1600 ICs.

To reduce anatomical differences between subjects, the 1600 spatial
ICs were registered to the MNI standard space by using nonlinear
spatial transformations as implemented in the SPM2 software. The
aim of the analysis was then to cluster ICs across subjects and runs
based on their spatial similarity. To quantify this notion, a distance
d was derived from the spatial correlation coefficient r between two
ICs (IC1 and IC2) as follows:

d(IC1, IC2) =
p

1− r(IC1, IC2).

Clustering of the 1600 ICs was performed using a hierarchical clus-
tering algorithm that minimizes the intra-class similarity [17], yield-
ing a similarity tree.

From this similarity tree, the main issue was then to partition all
1600 ICs into a certain number of classes gathering similar ICs from
different runs. We proposed an original automatic way to define the
classes that were the most representative of the population. Indeed,
each class should ideally be composed of one and only one IC from
each run. Thus, from the similarity tree (describing IC clustering as a
function of intra-class similarity), group-representative classes were
chosen using an ad hoc algorithm optimizing both the degree of rep-
resentativity (DR) and the degree of unicity (DU) of each class. For
a given class, DR was defined as the number NR of distinct runs that
contributed to it, divided by the total number of runs. However, each
run may contribute to a class through more than one IC. Therefore,
among the NR runs, the degree of unicity DU was defined as the
number of runs that contributed to the class with one and only one
component, divided by NR. With these definitions, an optimal class
was characterized by DR=1 and DU=1. In our procedure, the scores
limits were set to DR>0.5 and DU>0.75, i.e. for each class, at least
half of the runs contribute to this class and at least 75% of these runs
contribute with only one IC. When both conditions were not simulta-
neously fullfilled, DR was privileged compared to DU. For instance,
when a class B with DR(B)>0.5 and DU(B)<0.75 was obtained
from the merging of two classes A1 and A2 with DR(A1)<0.5 and

1http://www.fil.ion.ucl.ac.uk/spm/spm2.

DR(A2)<0.5, the procedure retained the merged class B instead of
the two classes A1 and A2.

Finally, for each class so defined, we searched for clusters of
voxels that systematically revealed high z-scores in the spatial ICs
contributing to this class. To do so, we computed a fixed-effect group
map of t-scores for each class, by dividing, for each voxel, the mean
by the variance of the z-scores of all ICs belonging to the class.
These maps were thresholded at p < 0.05 with a false discovery
rate procedure to control for multiple comparisons [18] and were vi-
sually inspected to exclude classes related to noise processes, which
had known spatial distributions [19]. The remaining group maps rep-
resented the networks of interest and were considered as group maps
of reference for the following evaluation procedure.

2.3. Reproducibility test

To assess the confidence level of IC clustering and evaluate the ro-
bustness of the networks detection, we used a general procedure
based on bootstrap [20] for making statistical inference from the
whole procedure. Once group maps of reference were identified
from the whole dataset as described above, NEDICA was applied
again using only half of the runs randomly selected, yielding new
group maps. The spatial correlation between each group map and
each group map of reference was computed. For each group map of
reference, the group map with the highest correlation with this map
of reference was selected. If the maximum correlation was lower
than 0.3, the corresponding group map of reference was considered
as not represented. This procedure was repeated 100 times. Then,
scores of reproducibility and similarity were computed for each map
of reference. The reproducibility score was defined as the ratio be-
tween the number of bootstrap tests where the group map of refer-
ence was found to be represented and the total number of bootstrap
samples (i.e., 100). The similarity score was defined as the average
spatial correlation between the map of reference and its bootstrap
representative maps.

3. RESULTS

Applied to the 40 resting-state runs, NEDICA provided seven func-
tional networks distributed into cortical, sub-cortical, and cerebellar
areas (see Figure 1). The final degrees of group representativity and
unicity were higher than 0.6 and 0.7, respectively. The resulting net-
works included functionally relevant regions involved in memory,
attention, motor processing, or visual processing.

The dATT network, known as the dorsal attentional network
[2], involved the superior and inferior parietal cortices (BA 7/40),
the medial and lateral premotor (BA 6/8), the ventral and dorsal
prefrontal cortices (BA 44/46), the posterior cingulate gyrus (BA
31), and the middle and inferior temporal cortices (BA 21/37). The
vATT network, often called ventral attentional network [2], included
regions of the dorsolateral prefrontal cortex (BA 9), the ventral
prefrontal cortex (BA 46), the anterior supplementary motor area
(BA 6), of the supramarginal gyrus (BA 40), and the middle tem-
poral gyrus (BA 21). The DM network, known as the default-mode
network [6], involved the lateral superior (BA 8) and rostrome-
dial frontal cortices (BA 10), the anterior and posterior cingulate
(BA 24/31), the angular gyrus (BA 40), the precuneus (BA 7),
the middle temporal gyrus (BA 21/39), and the hippocampus and
parahippocampal gyrus. The network denoted MESOL involved,
in particular, anterior (ACC) and posterior (PCC) cingulates (BA
24/31), the dorsolateral prefrontal cortex (BA 9), the dorsomedial
thalamus, the parahippocampal gyrus, and the ventral tegmentum

1248



Fig. 1. Functional networks identified by NEDICA. Five representa-
tive axial slices of each thresholded map are presented, overlaid on a
high-resolution structural scan transformed into MNI standard space
(MNI512). The left hemisphere is on the right side of the images.
The degrees of representativity (DR) and unicity (DU) are given for
each network. dATT: dorsal attentional; vATT: ventral attentional;
DM: default-mode; MESOL: fronto-mesolimbic; MOT: motor; VIS:
visual; LANG: language.

area (VTA). These regions are known to belong to dopaminergic
pathways, from the midbrain (VTA and substantia nigra) to the cor-
tex (ACC and prefrontal cortex) and to subcortical areas [21]. The
spatial structure of this network, close to that of the default-mode
network, revealed parts of the fronto-mesolimbic system. The MOT
network involved sensorimotor areas such as the primary motor
cortex (BA 4), the supplementary motor area (BA 6), the postcentral
gyrus (BA 3), and the secondary somatosensory cortex (BA 40/43).
The VIS network exhibited regions of striate and parastriate areas
(BA 17/18), and lateral middle and superior occipital gyri (BA 19).
Finally, the LANG network included regions in Broca’s (BA 45)
and Wernicke’s areas (BA 22/39). This network involved also the
angular gyrus (BA 39), the medial superior frontal cortex (BA 8/9),
the dorsolateral prefontal cortex (BA 9), the middle temporal gyrus
(BA 21/39), and the temporal pole (BA 21). This network was
clearly left-lateralized, suggesting that it represents the language
system [4].

The results of the bootstrap reproducibility test are presented in
Figure 2. They show that the resulting functional networks were
very reproducible (each network was identified at least 95 times out
of 100) and very robust (the average similarity scores were never
lower than 0.73).

Fig. 2. Scores of reproducibility and similarity for the seven net-
works. The mean and standard deviation of the similarity scores are
plotted.

4. DISCUSSION

The NEDICA procedure we have proposed allowed one to identify
seven functional networks from a group of twenty healthy subjects.
These networks appeared to be not only highly representative of the
population, but also highly robust to bootstrap sampling tests. To our
knowledge, three other studies have applied ICA-based methods on
fMRI datasets to identify group resting-state networks [10, 11, 12].
Even if the number of resulting networks varied from one study to
another, their spatial structures were very similar. Studies [10] and
[12] revealed almost the same networks as the present study, but
sometimes splitted (for example the dATT network was found sepa-
rated into two distinct networks, one in the right hemisphere and the
other in the left hemisphere). Five networks found by NEDICA were
also identified by the three other studies (dATT, vATT, DM, MOT,
and VIS). The network LANG was partly identified (the temporal
part) only in [12] and the MESOL was never revealed. Conversely,
two studies [10, 12] identified an auditory network, which NED-
ICA did not find. Besides, our results are consistent with the exist-
ing litterature on the brain organization. Indeed, we found primary
networks (motor and visual systems) as well as networks related to
higher level functions (attentional or memory networks). Finally, we
showed that our results were highly reproducible by using a boot-
strap sampling procedure on the population. This procedure allowed
us to increase our confidence in the seven networks we selected.

The approach based on hierarchical clustering of individual ICs
is similar to the sogICA method proposed by Esposito et al. [15].
Computation of individual sICA decomposition prior to the clus-
tering of similar effects across subjects allows one to account for
possible high between-subject variability. Moreover, the criteria we
proposed to automatically define the classes from the similarity tree
allow one to control relevance of these classes relative to individ-
ual sICA decompositions. Indeed, the unicity criterion ensures, to
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a certain extent, that two (or more) effects separated in a majority
of individual cases are not merged into the same final cluster. This
prevents from defining inhomogeneous classes. At the same time,
contrary to the approach proposed in [15], which consisted in man-
ually choosing the classes on the basis of constraints on DR and/or
on intra-class similarity, NEDICA can automatically identify classes
with a relatively low DR (until 0.5). This allows one to possibly
detect effects with a low level of covariance that may not be system-
atically found for each subject but well-differenciated from the other
structures of interest.

As it is now largely accepted that brain functions involve dis-
tributed large-scale networks, it is of particular interest to study the
modulation induced by different cognitive conditions on the basis of
the functional networks identified at rest by using NEDICA. So the
method could be applied on the same population under different ex-
perimental conditions or on different populations (healthy subjects
versus patients for instance). However, exploratory methods based
on sICA decomposition are sensitive only to high levels of covari-
ability. Therefore, slight modulations or differences in interactions
due to different conditions and/or populations may not be systemati-
cally detected by such methods. These questions will be adressed in
our future investigations.

5. CONCLUSION

Spatial ICA applied on individual fMRI datasets has proved its ef-
ficiency to extract structured brain processes, related to functional
connectivity in particular. Yet, existing methods fail to provide ro-
bust results at the group level. The method we proposed, NEDICA,
allows one to identify in a robust manner functional networks at
the group level, which are relevant relative to the individual sICA
decompositions. We believe that this method, so far evaluated on
resting-state data, will prove an efficient tool to explore functional
brain reorganizations induced by different experimental conditions.
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